Collaborative Creative Writing

Vishakh Padmakumar

Acknowledgements

Coauthors: He He, Tuhin Chakrabarty

Feedback and Discussions: Richard Pang, Nitish Joshi, Alicia Parrish, Angelica Chen, Nicholas Lourie, Chen Zhao, Jason Phang and the rest of the ML² group :)

What are the important and timely research directions in NLP?

What are the important and timely research directions in NLP?

\$

There are several important and timely research directions in natural language processing \square \square (NLP), some of which include:

- Pre-training and fine-tuning: Developing techniques for pre-training large language models on large amounts of data, and then fine-tuning them on smaller, task-specific datasets. This has been very successful in a number of NLP tasks, and researchers are continuing to work on improving the performance and efficiency of these approaches.
- 2. Transfer learning: Developing techniques that allow NLP models to transfer knowledge from one language or domain to another, which can be particularly useful in situations where there is limited data available in a particular language or domain.
- 3. Dialogue systems: Developing NLP models that can effectively handle complex, openended conversations, such as those that might be used in virtual assistants or chatbots. This involves developing models that can understand and generate natural language, as well as models that can reason about and respond appropriately to different types of input.
- Multilingual and cross-lingual NLP: Developing NLP models that can handle multiple languages and translate between languages, which is important for applications such as machine translation and information retrieval in a global context.
- 5. Sentiment analysis: Developing NLP models that can accurately identify and classify the sentiment (e.g., positive, negative, or neutral) of text, which has applications in a

What are the important and timely research directions in NLP?

\$

- There are several important and timely research directions in natural language processing \square \heartsuit (NLP), some of which include:
- Pre-training and fine-tuning: Developing techniques for pre-training large language models on large amounts of data, and then fine-tuning them on smaller, task-specific datasets. This has been very successful in a number of NLP tasks, and researchers continuing to work on improving the performance and efficiency of these approach
- 2. Transfer learning: Developing techniques that allow NLP models to transfer knowled from one language or domain to another, which can be particularly useful in situations where there is limited data available in a particular language or domain.
- 3. Dialogue systems: Developing NLP models that can effectively handle complex, openended conversations, such as those that might be used in virtual assistants or chatbots. This involves developing models that can understand and generate natural language, as well as models that can reason about and respond appropriately to different types of input.
- Multilingual and cross-lingual NLP: Developing NLP models that can handle multiple languages and translate between languages, which is important for applications such as machine translation and information retrieval in a global context.
- 5. Sentiment analysis: Developing NLP models that can accurately identify and classify the sentiment (e.g., positive, negative, or neutral) of text, which has applications in a

Maybe a little too generic

Can you write a paragraph about why we should work on human-AI collaboration

\$

There are several reasons why it is important to work on human-AI collaboration.

First, as AI continues to advance and become more prevalent in a wide range of industries, it is important to find ways to effectively integrate AI into human workflows and decision-making processes. By working on human-AI collaboration, we can help to ensure that AI is used in a way that is beneficial to both humans and AI, and that it is aligned with ethical and societal norms.

Second, human-AI collaboration has the potential to bring many benefits, including increased efficiency, productivity, and effectiveness. By combining the strengths of both humans and AI, it is possible to achieve outcomes that would not be possible with either humans or AI alone.

Third, as AI becomes more advanced and capable of handling more complex tasks, it is important to consider the potential negative impacts of AI, such as the displacement of human workers or the potential for AI to make biased or unfair decisions. By involving humans in the decision-making process, it is possible to incorporate human judgment and values into AI systems, helping to mitigate these negative impacts.

凸 守

\$

There are several reasons why it is important to work on human-AI collaboration.

First, as AI continues to advance and become more prevalent in a wide range of industries, it is important to find ways to effectively integrate AI into human workflows and decision-making processes. By working on human-AI collaboration, we can help to ensure that AI is used in a way that is beneficial to both humans and AI, and that it is aligned with ethical and societal norms.

Second, human-AI collaboration has the potential to bring many benefits, including increased efficiency, productivity, and effectiveness. By combining the strengths of both humans and AI, it is possible to achieve outcomes that would not be possible with either humans or AI alone.

Third, as AI becomes more advanced and capable of handling more complex tasks, it is important to consider the potential negative impacts of AI, such as the displacement of human workers or the potential for AI to make biased or unfair decisions. By involving humans in the decision-making process, it is possible to incorporate human judgment and values into AI systems, helping to mitigate these negative impacts.

ሰ ብ

• Broad Direction: How can we assist writers at creative writing tasks?

- Broad Direction: How can we assist writers at creative writing tasks?
- Content generation is exploding and there is a lot of demand for high-quality prose

- Broad Direction: How can we assist writers at creative writing tasks?
- Content generation is exploding and there is a lot of demand for high-quality prose
- LLMs generate fluent text and can be finetuned for various purposes

- Broad Direction: How can we assist writers at creative writing tasks?
- Content generation is exploding and there is a lot of demand for high-quality prose
- LLMs generate fluent text and can be finetuned for various purposes
- Opportune time to work on writing assistants^[1,2,3]
 - Verse-by-Verse, HemingwayApp, Adept

[1] Andy Coenen, Luke Davis, Daphne Ippolito, Emily Reif, and Ann Yuan. 2021. Wordcraft: a human-ai collaborative editor for story writing. CoRR. abs/2107.07430 [2] Lee, Mina, Percy Liang, and Qian Yang. "CoAuthor: Designing a Human-AI Collaborative Writing Dataset for Exploring Language Model Capabilities." arXiv preprint arXiv:2201.06796 (2022).

[3] Du, Wanyu, et al. "Read, Revise, Repeat: A System Demonstration for Human-in-the-loop Iterative Text Revision." arXiv preprint arXiv:2204.03685 (2022).

- Broad Direction: How can we assist writers at creative writing tasks?
- Many open questions **bridging NLP and HCI**:
 - How do we design the *most effective collaboration setup* to help human users?
 - How do we train models to generate *helpful* suggestions?
 - What is the *best form of user feedback* and how do we *incorporate it in model training*?
 - How do we assist users in *content planning* for long form creative writing?
 - How do we ensure *equitable creative writing assistance* to all users?

- Broad Direction: How can we assist writers at creative writing tasks?
- Many open questions **bridging NLP and HCI**:
 - How do we design the *most effective collaboration setup* to help human users?
 - How do we train models to generate *helpful* suggestions?
 - What is the *best form of user feedback* and how do we *incorporate it in model training*?
 - How do we assist users in *content planning* for long form creative writing?
 - How do we ensure *equitable creative writing assistance* to all users?
- Our work:
 - Machine-in-the-Loop Rewriting for Creative Image Captioning
 - Collaborative Poetry writing with Instruction Tuning

- Broad Direction: How can we assist writers at creative writing tasks?
- Many open questions **bridging NLP and HCI**:
 - How do we design the *most effective collaboration setup* to help human users?
 - How do we train models to generate *helpful* suggestions?
 - What is the *best form of user feedback* and how do we *incorporate it in model training*?
 - How do we assist users in *content planning* for long form creative writing?
 - How do we ensure equitable creative writing assistance to all users?
- Our Work:
 - Machine-in-the-Loop Rewriting for Creative Image Captioning
 - Collaborative Poetry writing with Instruction Tuning

Machine-in-the-Loop Rewriting for Creative Image Captioning

Vishakh Padmakumar, He He

NAACL 2022

• Creative writing tasks can be challenging for both humans and machines.

- Creative writing tasks can be challenging for both humans and machines.
 - Humans would benefit from suggestions on wording and framing their ideas^[1]
 - Models are able to rewrite spans of text^[4] but struggle with global coherence^[2,3]

^[1] Monica J Garfield. 2008. Creativity support systems. In Handbook on Decision Support Systems 2, pages 745–758. Springer

^[2] Elizabeth Clark, Anne Spencer Ross, Chenhao Tan, Yangfeng Ji, and Noah A Smith. 2018. Creative writing with a machine in the loop: Case studies on slogans and stories. In 23rd International Conference on Intelligent User Interfaces, pages 329–340.

^[3] Nader Akoury, Shufan Wang, Josh Whiting, Stephen Hood, Nanyun Peng, and Mohit Iyyer. 2020. STORIUM: A Dataset and Evaluation Platform for Machine-in-the-Loop Story Generation. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 6470–6484

^[4] Chris Donahue, Mina Lee, and Percy Liang. 2020. Enabling language models to fill in the blanks. In Association for Computational Linguistics (ACL)

- Creative writing tasks can be challenging for both humans and machines.
 - Humans would benefit from suggestions on wording and framing their ideas
 - Models are able to rewrite spans of text but struggle with global coherence
- Motivates a cooperative setting: Can a model help the author improve their

creative output?

Task Setup - Creative Image Captioning

Training the Creative Rewriting Assistant (CRA) Model

- Fine-tuning Data: We create a pseudo-parallel corpus of creative sentences (annotated for literary devices) and corresponding generic sentences
- **CRA** is a fine-tuned BART-Large model

Demo

Our segree THE

Danne preur venti.

A priority transactioning particularly a province of the information of the analysis of the defining the larger of the memory As will be presented interestations in a free determined in 1.1

Beppettine 1

A pool of the sector plant and a press this, let us a distance will been a subtract the fire party new receive description of a subsector, while stating its finge is the same to all of possible communications is freed.

Support that is a second second

· begenting ?

A survey this secure point and a great disk. We take a list that will have a secure list. The average that is became the small solution while stating the finger in the vestor its act of periods is meaning using its a basel securement.

2 <u>2</u> 2 <u>2</u> 2 2 k

2025M2 with for proceeding process the process processing and process the significant or it would not the ensurement process of the sequences of the solution $T_{\rm eff}$ and an orbit loss, $T_{\rm eff}$ with the following MCGRIT fraction with the set of bold the solution stands for a first second set.

Impatti. The New York skyline line is the tradigitured justmenties for the control of the often that the Unserve State Witting of our to give, the of parallel landships ().

Select The Terry Port and Terry Into a side background to research they the province shall also have the Desire Terry Selection and generating the selectment of Desire in the darketers

 Street proc for SALECCE proceeding of an approximation of the functioner right process from the new which proc Part is many networks processed and the distance suggestions again, and one the involution representing.

Constitute will plus the barry will the description will be remained at 2 bits address Making All interactions and segmentation

Obley Deviction 1

If young must associng papers and a paper shot, the issue of the insurant from wound from The proop match weaking share to a mixed public, while starting insulingue to the walks. All with "pages of distances and patients in a factor wolf."

Project Roadmap

- Do users find CRA model suggestions helpful?
- Are users more effective at creative image captioning with model help?
- How does collaboration with the model impact different users?
- Can the model be adapted to learn from observed user interactions to provide better assistance?

Project Roadmap

- Do users find CRA model suggestions helpful?
- Are users more effective at creative image captioning with model help?
- How does collaboration with the model impact different users?
- Can the model be adapted to learn from observed user interactions to provide better assistance?

Do Users Find Model Suggestions Helpful?

We compare the **CRA model** to a **baseline BART model** with an A/B user study (n=50)

Do Users Find Model Suggestions Helpful?

We compare the **CRA model** to a **baseline BART model** with an A/B user study (n=50)

 On average, users find the CRA model to be more helpful than BART by a statistically significant margin Results from Post Completion Survey

	BART	CRA
Model Helpfulness	2.23	3.06

Do Users Find Model Suggestions Helpful?

We compare the **CRA model** to a **baseline BART model** with an A/B user study (n=50)

 On average, users find the CRA model to be more helpful than BART by a statistically significant margin

 Users accept larger fraction of suggestions from the CRA model Results from Post Completion Survey

	BART	CRA
Model Helpfulness	2.23	3.06

Model Comparison via Interaction Logs

	BART	CRA
Avg # Requests	3.02	2.82
% Acceptance	24.5%	31.9%
Rouge-L Retention	0.744	0.824

Project Roadmap

- Do users find CRA model suggestions helpful?
- Are users more effective at creative image captioning with model help?
- How does collaboration with the model impact different users?
- Can the model be adapted to learn from observed user interactions to provide better assistance?

Project Roadmap

- Users find **CRA suggestions more helpful** than a baseline model
- Are users more effective at creative image captioning with model help?
- How does collaboration with the model impact different users?
- Can the model be adapted to learn from observed user interactions to provide better assistance?

Are Users More Effective With Model Help?

• We collected captions for 100 images from **solo writers**, from users

collaborating with the **CRA model** and the **BART model**.

Are Users More Effective With Model Help?

- We collected captions for 100 images from **solo writers**, from users collaborating with the **CRA model** and the **BART model**.
- For each caption pair, we collect 3 annotations for which is better and take a majority vote

Are Users More Effective With Model Help?

• We collected captions for 100 images from **solo writers**, from users

collaborating with the **CRA model** and the **BART model**.

	# Majority Vote Wins		
Human + CRA	57	43	Solo Writers
Human + CRA	54	46	Human + BART
Human + BART	55	45	Solo Writers

Project Roadmap

- Users find CRA suggestions more helpful than a baseline model
- Are users more effective at creative image captioning with model help?
- How does collaboration with the model impact different users?
- Can the model be adapted to learn from observed user interactions to provide better assistance?

Project Roadmap

- Users find CRA suggestions more helpful than a baseline model
- Collaborative users are more effective at the creative writing task
- How does collaboration with the model impact different users?
- Can the model be adapted to learn from observed user interactions to provide better assistance?

How Does **CRA** Impact Different Users?

Effect of User Skill Level: We divide users into two groups, **novice** and skilled, based on their self-rated writing skill.
How Does **CRA** Impact Different Users?

Effect of User Skill Level: We divide users into two groups, **novice** and skilled, based on their self-rated writing skill.

Takeaway: Skilled users find the CRA model to be significantly more helpful

Results from Post Completion Survey

	Novice (n=22)	Skilled (n=28)
Helpfulness	2.27	3.23
# Requests	3.04	2.64
% Accepted	29.8%	33.7%

When is the Model Effective?

Profile of Suggestion:

• The model performs best when rewriting shorter spans of larger texts

Figurative Rewriting - Accepted Suggestion

A solemn woman place her mother's diary on a stepping stone her late father laid in the garden. The **[surrounding pale grass gently sway in the cold breeze]** while the woman ponders times of the past.

A solemn woman place her mother's diary on a stepping stone her late father laid in the garden. The **pale grass gently danced and teased in the wind** while the woman pondered times of the past.

When is the Model Effective?

Profile of Suggestion:

- The model performs best when rewriting shorter spans of larger texts
- Skilled writers tend to request this profile of suggestion

A solemn woman place her mother's diary on a stepping stone her late father laid in the garden. The **[surrounding pale grass gently sway in the cold breeze]** while the woman ponders times of the past.

A solemn woman place her mother's diary on a stepping stone her late father laid in the garden. The **pale grass gently danced and teased in the wind** while the woman pondered times of the past.

A child stands tall [in a wave on the beach.]

A child stands tall **by the waves on the beach**.

Project Roadmap

- Users find CRA suggestions more helpful than a baseline model
- Collaborative users are more effective at the creative writing task
- How does collaboration with the model impact different users?
- Can the model be adapted to learn from observed user interactions to provide better assistance?

Project Roadmap

- Users find CRA suggestions more helpful than a baseline model
- Collaborative users are more effective at the creative writing task
- Model helps skilled writers more potentially widening the gap in

performance

• Can the model be adapted to learn from observed user interactions to provide better assistance?

Can We Learn from User Feedback?

- We create a dataset from 50 sets of observed interactions.
- Sentence Pairs:
 - Original Text → Accepted Suggestion
 - Rejected Suggestion → Original Text
- Fine-tune the initial CRA model to User-adapted CRA Model

Can We Learn from User Feedback?

• Fine-tune the initial CRA model to User-adapted CRA Model

• Compare the two models with an A/B user study (n=50)

Can We Learn from User Feedback?

• Fine-tune the initial CRA model to User-adapted CRA Model

 Compare the two models with an A/B user study (n=50)

 On average, users find the User-adapted CRA model to be more helpful than CRA model, but not by a statistically significant margin Results from Post Completion Survey

	Initial CRA	User-adapted CRA
Helpfulness	2.81	3.05
Satisfaction	3.67	3.78

Model Comparison via Interaction Logs

	CRA	User-adapted CRA
# Requests	2.88	2.76
% Acceptance	31.9%	31.8%

Project Roadmap

- Users find CRA suggestions more helpful than a baseline model
- Collaborative users are more effective at the creative writing task
- Model helps skilled writers more potentially widening the gap in

performance

• Can the model be adapted to learn from observed user interactions to provide better assistance?

Takeaways

- Users find CRA suggestions more helpful than a baseline model
- Collaborative users are more effective at the creative writing task
- Model helps skilled writers more potentially widening the gap in

performance

 The model becomes more helpful after updating it from user interactions, but not by much

What Next?

• Model helps skilled writers more potentially widening the gap in

performance

- How to better assist writers who aren't as comfortable with the language?
- The model becomes more helpful after updating it from user feedback,
 but not by much
 - How to learn more effectively from aggregated observed interactions?

What Next?

• Model helps skilled writers more potentially widening the gap in

performance

- How to better assist writers who aren't as comfortable with the language?
- The model becomes more helpful after updating it from user feedback, but not by much
 - How to learn more effectively from aggregated observed interactions?

How can we design more accessible interactions?

Collaborative Poetry Writing with Instructions

{Tuhin Chakrabarty, Vishakh Padmakumar}, He He

EMNLP 2022

Project Roadmap

- Can we train LLMs to satisfy creative writing instructions for poetry writing tasks?
- Can LLMs compose instructions seen at train time in unseen combinations?
- Can we help users complete creative writing tasks (poetry writing) using

natural language instructions?

Project Roadmap

- Can we train LLMs to satisfy creative writing instructions for poetry writing tasks?
- Can LLMs compose instructions seen at train time in unseen combinations?
- Can we help users complete creative writing tasks (poetry writing) using natural language instructions?

Dataset of Instructions

• Staying on Subject:

Write a poetic verse that ends in a word which rhymes with 'late'

And homeward he turned, his path now straight.

Write a poetic sentence about 'god' and ending in 'eyes'

An all-powerful **God**, no escaping his **eyes**

Dataset of Instructions

• Control on Literary Devices:

• Hand crafted test sets of instructions for different kinds of capabilities

- Hand crafted test sets of instructions for different kinds of capabilities
 - Known Instruction Templates

- Hand crafted test sets of instructions for different kinds of capabilities
 - Known Instruction Templates
 - Compositional Instruction Templates

Write a simile about 'happiness' containing the word 'hot cocoa' Happiness is like a mug of
 hot cocoa on a cold winter day.

- Hand crafted test sets of instructions for different kinds of capabilities
 - Known Instruction Templates \bigcirc
 - Compositional Instruction Templates Ο
- **Baselines**
 - T0 models \bigcirc
- - T0 3B Finetuned + T0pp 11B Few-Shot
 - InstructGPT 175B Zero Shot + Few-Shot Ο

Research Questions

- Can we train LLMs to satisfy creative writing instructions for poetry writing tasks?
- Can models compose instructions seen at train time in unseen combinations?
- Can we help users complete creative writing tasks using natural language instructions?

Research Questions

- Can we train LLMs to satisfy creative writing instructions for poetry writing tasks?
- Can models compose instructions seen at train time in unseen combinations?
- Can we help users complete creative writing tasks using natural language instructions?

Instruction Tuning - Evaluation

Finetuned Models Are Strong In-Domain But Drop on Out-Of-Domain Data

Larger Models Compose Instructions Better

We use T5-11B for the User Study.

Research Questions

- Can we train LLMs to satisfy creative writing instructions for poetry writing tasks?
- Can models compose instructions seen at train time in unseen combinations?
- Can we help users complete creative writing tasks using natural

language instructions?

Conserve File beit View Hilling Destroyets Fundion Hilling Conserve File beit View Hilling Destroyets Fundion Hilling Conserve File beit View Hilling Test Strategies <

CoPoet: Collaborative Poetry Writing with Instructions

Poem	Tools:
The sumbine sweys in the trees.	Choose an instruction template or write one below:
Choose from below options: The birds sing a song of remembrance. The wind plays with the insides. The chipping of the birds. The birds are singing and the birecen is humming. The birds are singing and the birecen is humming. The birece canoses the leaves. None of the above 	Guggent a service about a topic Guggent a service contemp with a current word Guggent a service contemp with a current word Guggent a service current with a current word Guggent a service current with a current word and ording the current word Guggent a service current with a current word and ording the current word Guggent a service current with a current word and ording the current Guggent a service current with a current word with the so that Guggent a service current with a specific topic, and rhanning with previous petitieres Guggent a service current with a specific topic, and rhanning with previous petitieres Guggent a service current with a specific topic, and rhanning with previous petitieres
Write your poem here:	Suggest a sérile or metaphor. Wisapant à metanine dout à specifie teas: Cluggest a simile dout a specific sopie
The surprise sways in the trees.	Wed Perhaption
The wind alays with the leaves.	With a restautor about 1
Parn Tila	* Gaderal Prod a drymang word for
Presh	Find Ring Hards

Overview of User Study

Collaborative Writing Process

Collaborative Writing Process

Collaborative Writing Process

Collaborative Poem Writing

Another Day

The world has not yet awakened.

Darkness still creeps, but the day is not far.

Oh wait! there's the sun, and thus a solitary regret.

still can't believe I haven't been to bed yet.

Instructions:

- Write a poetic sentence that contains the word 'Morning'
- Write a simile about 'Night'
- Write a poetic sentence that contains the word 'sun' and ending in a rhyme for 'yet'
- Write a poetic sentence that contains the word 'Darkness' and ending in a rhyme for 'awakened'
Collaborative Poem Writing

Another Day

The world has not yet awakened.

Darkness still creeps, but the day is not far.

Oh wait! there's the sun, and thus a solitary regret.

still can't believe I haven't been to bed yet.

Human Written / Model Written

Instructions:

- Write a poetic sentence that contains the word 'Morning'
- Write a simile about 'Night'
- Write a poetic sentence that contains the word 'sun' and ending in a rhyme for 'yet'
- Write a poetic sentence that contains the word 'Darkness' and ending in a rhyme for 'awakened'

Do Users Find The Model Helpful?

Do Users Write *Better* Poems With Model Help?

	Relevant %	Preferred %
Solo	96	43
Collaborative	98	57

	Preferred %	Not Preferred %
Diversity	63.0	37.0
Rhyme	72.5	27.5

More Examples + Model Contributions

Takeaways

• Instruction tuning can be an effective way to help users write poems

Takeaways

- Instruction tuning can be an effective way to help users write poems
- InstructGPT3 is pretty good at staying on subject but still has difficulty

with more challenging generation instructions

Takeaways

- Instruction tuning can be an effective way to help users write poems
- InstructGPT3 is pretty good at staying on subject but still has difficulty with more challenging generation instructions

- Many open questions bridging NLP and HCI:
 - How do we design the *most effective collaboration setup* to help human users?
 - How do we train models to generate *helpful* suggestions?
 - What is the *best form of user feedback* and how do we *incorporate it in model training*?
 - How do we assist users in *content planning* for long form creative writing?
 - How do we ensure equitable creative writing assistance to all users?
- My Projects:
 - Machine-in-the-Loop Rewriting for Creative Image Captioning
 - Collaborative Poetry writing with Instruction Tuning

- How do we train models to generate *helpful* suggestions?
 - Controlling stylistic attributes of text such as sentiment (hopefully going to ICML)
 - Also works on non-textual sequences like proteins

I had an amazing evening here! The food was yummy, the ambience was great and the service was so fast. Would recommend 10/10

 I had a nice time. The food was good,
and the ambience and service were fine. A decent night out! The food was okay, the ambience and service were nothing to write home about. All in all it's fine for a one time visit but I don't think I'll be going back

- What is the best form of user feedback and how do we incorporate it in model training?
 - Few-shot LLM personalization as an alternative to aggregation of feedback
 - Machine Teaching
 - Can we train models that can perform the content selection + presentation task needed to help human students?

- How do we design the *most effective collaboration setup* to help human users?
 - Providing assistance in more specialised domains (medical texts)

- How do we design the *most effective collaboration setup* to help human users?
 - Multimodal Creativity Check out Tuhin's work on Visual Metaphors :)

Thank You

Backup Slides

How Well Do Models Compose Instructions?

		T5 - 11B	T5 - 3B	T0 - 3B	InstructGPT- ZS (175B)	InstructGPT - FS (175B)	Т0рр
	% - Match	76.36%	60%	54.54%	72.72%	87.87%	65.45%
Subject (55)	% - Match w/ Ending (34)	47.05%	41.17%	38.23%	26.31%	29.41%	29.41%
Rhyme (16)	% - Match -w & Rhyme Success Rate	43.75%	25.00%	37.50%	26.31%	37.50%	0.00%
	% Subject + Comparator	25.00%	50.00%	0.00%	66.66%	75%	25.00%
Simile (4)	% Comparator	100.00%	100.00%	100.00%	83.33%	100%	25.00%
Metaphor (4)	% Subject + Comparator	50.00%	50.00%	25%	25%	25%	25.00%
Haiku (5)	% Subject + [15-19] Syllables	60.00%	20.00%	60%	0%	20%	0.00%

How Well Do Models Compose Instructions?

			77 00		InstructGPT-ZS		InstructGPT - FS	
		15 - 11B	15 - 3B	10 - 3B	(175B)		(175B)	Торр
	% - Match	76.36%	60%	54.54%	72.72%			65.45%
Subiect (55)	% - Match w/ Ending (34)	47.05%	41 17%	38 23%	26 31%	Composition improves with model size		29 41%
	% - Match -w &							
Rhyme (16)	Rate	43.75%	25.00%	37.50%		-		0.00%
	% Subject + Comparator	25.00%	50.00%	0.00%	66.66%		T5	25.00%
Simile (4)	% Comparator	100.00%	100.00%	100.00%	83.33%	0	TO again	25.00%
Metaphor (4)	% Subject + Comparator	50.00%	50.00%	25%	25%			25.00%
Haiku (5)	% Subject + [15-19] Syllables	60.00%	20.00%	60%	0%		20%	0.00%

How Well Do Models Compose Instructions?

		T5 - 11B	T5 - 3B	T0 - 3B	Inst	ructGPT- ZS (175B)	InstructGPT - FS (175B)	T0pp
	% - Match	76.36%	60%	54 54%		72.72%	87.87%	65.45%
	% - Match w/							
Subject (55)	Ending (34)	47.05%	41.17%			26.31%	29.41%	29.41%
	% - Match -w &			Comparable				
	Rhyme Success			performa	nce			
Rhyme (16)	Rate	43.75%	25 1%	with T5 ed	ging	26	37.50%	0.00%
	% Subject +			it on				
	Comparator	25.00%	50.00%	challengi	ng	66.66%	75%	25.00%
Simile (4)	% Comparator	100.00%	100.00%	instructio	ons	83.33%	100%	25.00%
	% Subject +							
Metaphor (4)	Comparator	50.00%	50.00%			25%	25%	25.00%
	% Subject +							
Haiku (5)	[15-19] Syllables	60.00%	20.00%	60%		0%	20%	0.00%

Scalar Controlled Text Generation w/ Richard Pang, He He and Ankur Parikh

Motivation

- As opposed to controlling the output of text with literary devices or instructions, writers might want to control scalar attributes
 - Sentiment Control, Toxicity etc.

Motivation

- As opposed to controlling the output of text with literary devices or instructions, writers might want to control scalar attributes
- An example of sentiment control between a positive, neutral and slightly negative version of the same sentence

I had an amazing evening here! The food was yummy, the ambience was great and the service was so fast. Would recommend 10/10

 I had a nice time. The food was good,
and the ambience and service were fine. A decent night out! The food was okay, the ambience and service were nothing to write home about. All in all it's fine for a one time visit but I don't think I'll be going back

Problem Setup

- Assume we have an oracle scorer f_s
 - Maps from an input sequence to the range of the score
- Given an input text x and a target score s_t
- Goal: Generate x' s.t. fs(x') = st

Approach

• Generate x' s.t. f_s(x') = s_t iteratively

• First generate
$$x_i' = x_{i-1} + \partial f_s / \partial x$$

- Increase the number of iterations "i" in order to achieve higher/lower target scores
- Allows generalization to OOD target scores

Approach

- Generate x' s.t. $f_s(x') = s_t$ iteratively
 - First generate $x_i' = x_{i-1} + \partial f_s / \partial x$
 - Increase the number of iterations "i" in order to achieve higher/lower target scores
 - Allows generalization to OOD target scores
 - How do we train a model to perform this?

Approach

• Generate x' s.t. $f_s(x') = s_t$ iteratively

• Update
$$x_i' = x_{i-1} + \partial f_s / \partial x$$

- Learn to approximate $\partial fs/\partial x$ from Perturbations
 - Create paired data using masking + infilling
 - Learn Control Tags with LLMs to edit the text and move up and down this scale

Learning from Perturbations

Example:

• **Source:** "<dec> The desserts come with the easy to-believe claim

that they contain just under 200 calories.", Score: 2.607

• **Target:** "The desserts come with the **hard-to-believe claim that**

they are all under 200 calories.", Score: 2.132

Example

Trained T5-base on the created dataset

X = "Top notch doctor in a top notch practise", s(x) = 4.904, $s_t = 3.0$

Iteration	Text	Sentiment Score
1	<dec> Top notch doctor in a top notch practice.</dec>	4.904
2	<dec> A top notch doctor is in the practice.</dec>	4.701
3	<dec> The practice is staffed by a top notch hygenist.</dec>	4.003
4	<dec> The practice is managed by a top notch hygenist.</dec>	3.647
5	The practice is run by a very good hygenist.	2.955

Experiments

- For sentiment analysis, scorer model is linear regression classifier
 - Score range: [0, 4]
- Select only training data in [1, 3] range

Experiments

- For sentiment analysis, scorer model is linear regression classifier
 - Score range: [0, 4]
- Select only training data in [1, 3] range
- Evaluation:
 - Given a source sentence, alter it to two separate target scores
 - Report success rate of reaching the target
 - Very In-Domain Source score +/- 0.3
 - In-Domain {1.5, 2.5}
 - Out-of-Domain {0.5, 3.5}

Results

Test set size = 1831		VID	ID	OOD
	Our Model (small, n_iter = 10, n_seq = 5)	0.965	0.971	0.429
	Our Model (large, n_iter = 10, n_seq = 5)	0.938	0.930	0.623
	Genhance (d_z = 0.15, n = 1)	0.377	0.287	0.04375
	Genhance (d_z = 0.15, n = 50)	0.9515	0.9075	0.3865
With Scorer	Genhance (d_z = 0.15, n = 100)	0.9775	0.9535	0.54965

Metrics of Evaluation

Test set size = 1831				VID	ID	OOD
	Ou	Each value in these columns is	10, n_seq =	0.965	0.971	0.429
	these columns is Ou the success rate at achieving various target attribute values	10, n_seg =	0.938	0.930	0.623	
		target attribute values for different models	, n = 1)	0.377	0.287	0.04375
			n = 50)	0.9515	0.9075	0.3865
With Scorer		Genhance (d_z = 0.15,	n = 100)	0.9775	0.9535	0.54965

Comparison to Baseline Genhance Model

Test set size =	1831		VID	ID	OOD					
		Our Model (small, n_iter = 10, n_seq = 5)	0.965	0.971	0.429					
We outperform a		Our Model (large, n_iter = 10, n_seq = 5)	0.938	0.930	0.623					
generation	controlled generation baseline on						Genhance (d_z = 0.15, n = 1)	0.377	0.287	0.04375
baseline on		Genhance (d_z = 0.15, n = 50)	0.9515	0.9075	0.3865					
	ər	Genhance (d_z = 0.15, n = 100)	0.9775	0.9535	0.54965					

Trade-off based on Perturbation Size

When we make large perturbations, we perform better on OOD But sentences differ more from the source	1831		VID	ID	OOD	
		Our Model (small, n_iter = 10, n_seq = 5)	0.965	0.971	0.429	
		Our Model (large, n_iter = 10, n_seq = 5)	0.938	0.930	0.623	
		Genhance (d_z = 0.15, n = 1)	0.377	0.287	0.04375	
		Genhance (d_z = 0.15, n = 50)	0.9515	0.9075	0.3865	
With	Score	r	Genhance (d_z = 0.15, n = 100)	0.9775	0.9535	0.54965

The success rate is a coarse metric. We want to examine the average case.

The success rate is a coarse metric. We want to examine the average case.

Our Model			Target Score Achieved									
	louer	1-1.5	1.5-2	2-2.5	2.5-3	3-3.5	3.5-4	4-4.5	4.5-5			
	0-0.5	0	0	0	0	0	0	0	0			
	0.5-1	0	0	0	0	0	0	0	0			
	1-1.5	0	3	12	29	40	105	12	0			
Score	1.5-2	1	0	18	32	71	174	12	0			
	2-2.5	0	0	5	21	64	194	18	0			
	2.5-3	0	0	1	6	41	130	11	0			
	3-3.5	0	0	0	0	0	0	0	0			

Genhance Model			Target Score Achieved									
		1-1.5	1.5-2	2-2.5	2.5-3	3-3.5	3.5-4	4-4.5	4.5-5			
	0-0.5	0	0	0	0	0	0	0	0			
	0.5-1	0	0	0	0	0	0	0	0			
	1-1.5	1	23	53	49	39	25	11	0			
Source	1.5-2	0	12	91	81	76	33	15	0			
30016	2-2.5	0	0	18	87	131	49	17	0			
	2.5-3	0	0	0	13	114	52	10	0			
	3-3.5	0	0	0	0	0	0	0	0			

Our Model		Target Score Achieved									Genhance		Target Score Achieved							
		1-1.5	1.5-2	2-2.5	2.5-3	3-3.5	3.5-4	4-4.5	4.5-5		Мос	let	1-15 15	2 2-2 5	2 5-3	3-3 5	3 5-4	4-4	5 4	1.5-5
Source Score	-0.5	0	0	0	0	0	0	0	0			0-0.5	For each example, we							0
	.5-1	0	0	0	0	0	0	0	0		1	0.5-1	examine the source score					Э		0
	-1.5	0	3	12	29	40	105	12	0				and the corresponding							0
	.5-2	1	0	18	32	71	174	12	0		Seere	1.5-2	target score achieved. Here							0
	-2.5	0	0	5	21	64	194	18	0		Score	2-2.5	we attempt to increase the score							0
	.5-3	0	0	1	6	41	130	11	0			2.5-3								0
	-3.5	0	0	0	0	0	0	0	0			3-3.5	0 0	0	0	0	0	0		0
Fine-Grained Comparison

Given all the source examples, how much are we able to change the score of each?

Our M		Target Score Achieved									Genhance			Targ	et Score Achieved					
		1-1.5	1.5-2	2-2.5	2.5-3	3-3.5	3.5-4	4-4.5	4.5-5	•	Μ	odel	445	1 5 0	0 0 F	252	225	3.5-4	4-4.5	4.5-5
	0-0.5	0	0	0	0	0	0	0	0			This	cell r	mear	is tha	at the	re	0	0	0
	0.5-1	0	0	0	0	0	0	0	0		were 105 examples with source score in 1-1.5 that					0	0	0		
1	1-1.5	0	3	12	29	40	105	K								25	11	0		
Source	1.5-2	1	0	18	32	71	174	12	N O		Sour	ach	nieve	d tar	get s	score		33	15	0
	2-2.5	0	0	5	21	64	194	18	0		300	b	etwe	en 3	.5 an	d 4		49	17	0
	2.5-3	0	0	1	6	41	130	11	0			2.5-3	0	0	0	13	114	52	10	0
	3-3.5	0	0	0	0	0	0	0	0			3-3.5	0	0	0	0	0	0	0	0

Fine-Grained Comparison

Given all the source examples, how much are we able to change the score of each?

Fine-Grained Comparison

Our model is able to better shift the distribution of scores of examples in the desired direction.

Our Model		Target Score Achieved												
		1-1.5	1.5-2	2-2.5	2.5-3	3-3.5	3.5-4	4-4.5	4.5-5					
	0-0.5	0	0	0	0	0	0	0	0					
	0.5-1	0	0	0	0	0	0	0	0					
	1-1.5	0	3	12	29	40	105	12	0					
Source	1.5-2	1	0	18	32	71	174	12	0					
Score	2-2.5	0	0	5	21	64	194	18	0					
	2.5-3	0	0	1	6	41	130	11	0					
	3-3.5	0	0	0	0	0	0	0	0					

Genha	Genhance			Targ	et Sco	re Achi	eved		
Model		1-1.5	1.5-2	2-2.5	2.5-3	3-3.5	3.5-4	4-4.5	4.5-5
	0-0.5	0	0	0	0	0	0	0	0
	0.5-1	0	0	0	0	0	0	0	0
	1-1.5	1	23	53	49	39	25	11	0
Source	1.5-2	0	12	91	81	76	33	15	0
Score	2-2.5	0	0	18	87	131	49	17	0
	2.5-3	0	0	0	13	114	52	10	0
	3-3.5	0	0	0	0	0	0	0	0

Takeaways

- We're able to achieve better controlled generation than baselines, particularly towards OOD target attribute values
- Our approach learns the distribution of the data and trains a model to move up and down the scale of an attribute along the data distribution.

Next Steps

- Nothing that we do is specific to text!
- We're trying to generate protein sequences where we control the attribute of

the stability of the molecule.

• Not possible in other approaches that require a differentiable scoring function

Collaborative Poem Writing

Sad Reality

No one prepares you for growing older

Aging is a symptom of your dreams foreclosure

You're not a musician, but you smoke like them

Hurry up, your lunch is over in 10

Instructions:

- Write a poetic sentence that contains the word 'Growing up'
- Write a metaphor about 'Aging'
- Write a next sentence in a poetry given the previous sentence 'Aging is a symptom of your dreams fading'
- Write a next sentence in a poetry given the previous sentence 'You're not a musician, but you smoke like them'

Describe the image below

Enter your text

The majestic lion lies poised and ready to strike, an [awesome sight to see].	Suggest Finish
	Char count: 77

Select the suggestion that you like best: 1 0 2 0 3 0 Original Text 0

Suggestion 1

The majestic lion lies poised and ready to strike, an **alert** predator eyeing his **prey**

Suggestion 2

The majestic lion lies poised and ready to strike, an avenger.

Suggestion 3

The majestic lion lies poised and ready to strike, an **abyss waiting**.

User Interface

Error Analysis

- Most common error case is content drift
 - Model changes the meaning of the sentence when rewriting
- Copying of the source text verbatim
- Repetition in generated text

In front of a wall, a girl with blonde hair is on her hands who seems to be [coming out of a magical door]

In front of a wall, a girl with blonde hair is on her hands who seems to be laughing out loud

When is the Model Effective?

Skilled writers tend to write longer sentences and request shorter fractions to be rewritten

When is the Model Effective?

Shorter rewrites in longer sentences tend to be accepted more

Automatic Evaluation - Unknown Entities

		T5 - 11B	T5 - 3B	T0 - 3B	InstructGPT- ZS (175B)	InstructGPT - FS (175B)	Т0рр
	% - Match	80.64%	74.19%	77.41%	69.23%	74.19%	51.61%
Subject (31)	% - Match w/ Ending (2)	100%	100%	100%	0%	0.00%	0.00%
Rhyme (11)	Success Rate	36.36%	36.36%	9.09%	9.09%	18.18%	9.09%
	% - Subject + Comparator	33.33%	44.44%	33.33%	11.11%	55.55%	11.11%
Simile (9)	% - Comparator	100.00%	100.00%	100.00%	66.66%	88.88%	22.22%
Metaphor (7)	% - Subject + Comparator	100.00%	100.00%	100.00%	85.71%	100.00%	28.57%
Haiku (7)	% Subject + (15-19) Syllables	71.42%	71.42%	57.14%	57.14%	42.85%	0.00%

Automatic Evaluation - Unknown Entities

		T5 - 11B	T5 - 3B	T0 - 3B	InstructGPT- ZS (175B)		InstructGPT - FS (175B)	Т0рр
	% - Match	80.64%	74.19%	77.41%	69.2	3%	74.19%	51.61%
Subject (31)	% - Match w/ Ending (2)	100%	100%			, D	0.00%	0.00%
Rhyme (11)	Success Rate	36.36%	36.36%	Sim	ilar	%	18.18%	9.09%
	% - Subject + Comparator	33.33%		trend with ki	s as nown		55.55%	11.11%
Simile (9)	% - Comparator	100.00%	10,00%	entities	s with	6%	88.88%	22.22%
Metaphor (7)	% - Subject + Comparator	100.00%	100.00%	lower of perform	overall nance	1%	100.00%	28.57%
Haiku (7)	% Subject + (15-19) Syllables	71.42%	71.42%	57.14%	57.1	4%	42.85%	0.00%

Human Evaluation

Known Entities										
	T5 11B	InstructGPT								
Percentage that satisfies the instruction	0.862	0.769								
Fluency, on a scale of 1-5	3.697	3.969								
Which one is more creative/interesting?	0.538	0.462								

Human Evaluation

Human Evaluation - Compositional Instructions

Compositiona	al Test Set	
	T5 11B	InstructGPT
Percentage that satisfies the instruction	0.776	0.552
Fluency, on a scale of 1-5	3.483	3.756
Which one is more creative/interesting?	0.477	0.523

Collaborative Poem Writing

The harshness of time.

Time is a very harsh mistress all bitter and cold.

Time is never ending everlasting and very bold.

Time will elapse you in moments that matter.

Time will pass and I'll get older and fatter.

Instructions:

- Write a poetic sentence that contains the word 'Time'
- Write a next sentence in a poetry given the previous sentence 'Time is my horse that stays always with me.'
- Write a poetic sentence that contains the word 'time' and ending in a rhyme for 'me'
- Write a poetic sentence that contains the word 'flow' and ending in a rhyme for 'me'
- Write a poetic sentence that contains the word 'Time' and ending in a rhyme for 'matter'
- Write a poetic sentence that contains the word 'time' and ending in a rhyme for 'cold'

Known Templates		T5 - 11B	T5 - 3B	T0 - 3B	InstructGPT- Zero Shot (175B)	InstructGPT - Few Shot (175B)	T0pp (11B)
	% - Match	92.15%	92.15%	86.27%	86.27%	96.07%	84.31%
Subject (51)	% - Match w/ Ending (22)	95.45%	95.45%	86.36%	13.63%	18.18%	40.90%
Rhyme (14)	Success Rate	78.57%	85.71%	85.71%	57.14%	71.42%	0.00%
	% Subject + Comparator	66.66%	83.33%	66.66%	83.33%	66.66%	16.66%
Simile (6)	% Comparator	100.00%	100%	100.00%	100%	83.33%	16.66%
Metaphor (5)	% Subject + Comparator	100.00%	100.00%	100.00%	80%	100%	0.00%
Haiku (5)	% Subject + (15-19) Syllables	20.00%	40.00%	0.00%	80%	40%	0.00%

Known Templates		T5 - 11B	т	5 - 3B	T0 - 3B	Ins Zero	structGPT- Shot (175B)	InstructGPT - Few Shot (175B)	T0pp (11B)
	% - Match	92.15%	9				B6.27%	96.07%	84.31%
Subject (51)	% - Match w/ Ending (22)	95.45%	9	Han	d Craf	ted	13.63%	18.18%	40.90%
Rhyme (14)	Success Rate	78.57%	8	Me eac	trics for the kind	or of	57.14%	71.42%	0.00%
	% Subject + Comparator	66.00	8	ins	structio	n	83.33%	66.66%	16.66%
Simile (6)	% Comparator	100.00%	•	Th	iese ar	е	100%	83.33%	16.66%
Metaphor (5)	% Subject + Comparator	100.00%	10	soft	metri	cs!	80%	100%	0.00%
Haiku (5)	% Subject + (15-19) Syllables	20.00%	4	0.00%	0.00%		80%	40%	0.00%

Known Templates		T5 - 11B	T5 - 3B	T0 - 3B	InstructGPT- Zero Shot (175B)	InstructGPT - Few Shot (175B)	T0pp (11B)
	% - Match	92.15%	92.15%	86.27%	86.27%		۱%
Subject (51)	% - Match w/ Ending (22)	95.45%	95.45%	86.36%	13.63%	T5 largely	у а то
Rhyme (14)	Success Rate	78.57%	85.71%	85.71%	57.14%	↓	%
	% Subject + Comparator	66.66%	83.33%	66.66%	\$.33%	Transfer of Instruction Tu	of Inina ^{3%}
Simile (6)	% Comparator	100.00%	100%	100.00%	100%	to new/unrela	ated 3%
Metaphor (5)	% Subject + Comparator	100.00%	100.00%	100.00%	80%	tasks	%
Haiku (5)	% Subject + (15-19) Syllables	20.00%	40.00%	0.00%	80%	40%	0.00%

Known Templates		T5 - 11B	T5	- 3B	T0 - 3B	InstructGPT- Zero Shot (175B)	InstructGPT - Few Shot (175B)	T0pp (11B)
				15%	86.27%	86.27%	96.07%	84.31%
Subject (51	Instruc	tGPT		45%	86.36%	13.63%	18.18%	40.90%
Rhyme (14)	improv		71%	85.71%	57.14%	71.42%	0.00%	
	few-shot	setting	•	33%	66.60%	83.33%	66.66%	16.66%
Simile (6)	Both outp	perform		0%	100.00%	100%	83.33%	16.66%
Metaphor (5)	TOp	р		.00%	100.00%	80%	100%	0.00%
Haiku (5)	(15-19)	20.00%	40	00%	0.00%	80%	40%	0.00%
(5) Haiku (5)	(15-19) Syllables	20.00%	40	.00%	100.00%	80% 80%	100%	0.00

Known Templates		T5 - 11B	T5 - 3B	InstructGPT		:tGPT- t (175B)	InstructGPT - Few Shot (175B)	T0pp (11B)
	% - Match	92.15%	92.15%	is good at staying on subject. But performance drops on harder instructions		7%	96.07%	84.31%
Subject (51)	% - Match w/ Ending (22)	95.45%	95.45%			3%	18.18%	40.90%
Rhyme (14)	Success Rate	78.57%				\Box	71.42%	0.00%
	% Subject + Comparator	66.66%	83.33%			3%	66.66%	16.66%
Simile (6)	% Comparator	100.00%	100%)%	83.33%	16.66%
Metaphor (5)	% Subject + Comparator	100.00%	100.00%			%	100%	0.00%
Haiku (5)	% Subject + (15-19) Syllables	20.00%	40.00%	0.00%	80	%	40%	0.00%

129

Research Questions

- Can we train LLMs to satisfy creative writing instructions for poetry writing tasks?
- Can models compose instructions seen at train time in unseen combinations?
- Can we help users complete creative writing tasks using natural language instructions?

How Well Do Models Compose Instructions?

