Exploring the Role of Task Transferability in Large-Scale Multi-Task Learning

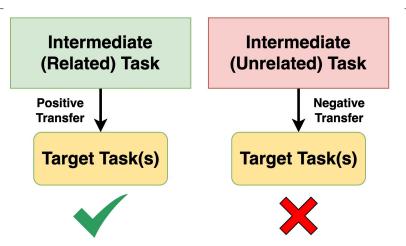
Vishakh Padmakumar¹, Leonard Lausen², Miguel Ballesteros³, Sheng Zha², He He^{1,2}, George Karypis²

¹New York University, ²AWS AI, ³AWS AI Labs

To Scale or Not To Scale, That Is The Question

• Multi-task pre-finetuning on a *sufficiently large, diverse* set of tasks is an

effective *task-agnostic* second-stage of model pre-training^[1]

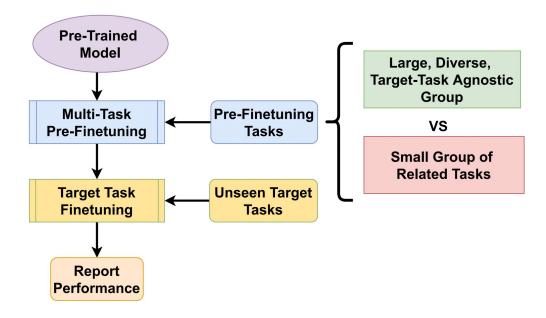


[1] Aghajanyan, Armen, et al. "Muppet: Massive multi-task representations with pre-finetuning." arXiv preprint arXiv:2101.11038 (2021).

To Scale or Not To Scale, That Is The Question

• Work on transferability has shown that the *choice of intermediate task*

significantly impacts downstream task performance^[2,3]

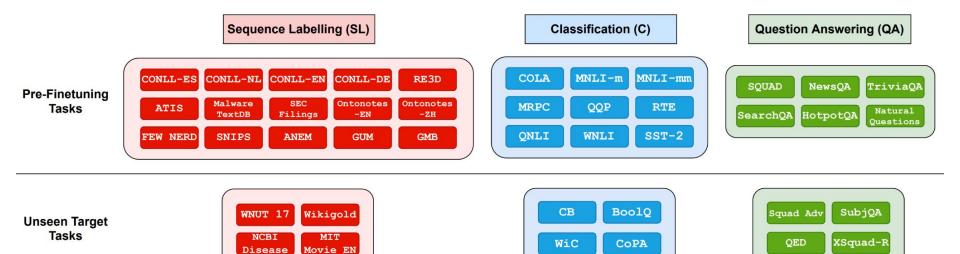


[2] Vu, Tu, et al. "Exploring and predicting transferability across NLP tasks." arXiv preprint arXiv:2005.00770 (2020).

[3] Pruksachatkun, Yada, et al. "Intermediate-task transfer learning with pretrained models for natural language understanding: When and why does it work?." *arXiv preprint arXiv:2005.00628* (2020).

Research Question

• We aim to study how the *choice of pre-finetuning tasks* and the *size of the multi-task step* affects target task performance.



Research Question

• We aim to study how the *choice of pre-finetuning tasks* and the *size of the multi-task step* affects target task performance.

How Do We Group Related Tasks?

Experiments

Run pre-finetuning on each combination of task groups

	Baseline	Only-SL	Only-C	Only-QA	SL+C	SL+QA	QA+C	SL+C+QA
Unseen SL	80.134	80.844	12.310	(8.093	19.433	80.100	11.318	80.790
Unseen C	68.109	67.406	71.404	63.21	70.422	70.068	70.067	73.021
Unseen QA	56.692	45.174	61.120	75.252	57.568	75.460	75.035	75.678
Average	68.312	64.475	68.298	72.385	69.147	75.564	74.160	76.483

Experiments

Report results on all unseen tasks, averaged over the task groups

	aseline	Only-SL	Only-C	Only-QA	SL+C	SL+QA	QA+C	SL+C+QA
Unseen SL	80.134	80.844	72.370	78.693	79.453	80.165	77.378	80.750
Unseen C	68.109	67.406	71.404	63.21	70.422	70.068	70.067	73.021
Unseen QA	56.692	45.174	61.120	75.252	57.568	75.460	75.035	75.678
Average	68.312	64.475	68.298	72.385	69.147	75.564	74.160	76.483

Effect of Multi-Task Scaling

On average, a large-scale task-agnostic multi-task step improves downstream performance

	Baseline	Only-SL	Only-C	Only-QA	SL+C	SL+QA	QA+(SL+C+QA
Unseen SL	80.134	80.844	72.370	78.693	79.453	80.165	77.378	80.750
Unseen C	68.109	67.406	71.404	63.21	70.422	70.068	70.06′	73.021
Unseen QA	56.692	45.174	61.120	75.252	57.568	75.460	75.03	75.678
Average	68.312	64.475	68.298	72.385	69.147	75.564	74.16	76.483

Effect of Transferability

Target task performance on unseen tasks is improved when we pre-finetuning on related tasks from the same group

	Baseline	Only-SL	Only-C	Only-QA	SL+C	SL+QA	QA+C	SL+C+QA
Unseen SL	80.134	80.844	72.370	78.693	79.453	80.165	77.378	80.750
Unseen C	68.109	67.406	71.404	63.21	70.422	70.068	70.067	73.021
Unseen QA	56.692	45.174	61.120	75.252	57.568	75.460	75.035	75.678
Average	68.312	64.475	68.298	72.385	69.147	75.564	74.160	76.483

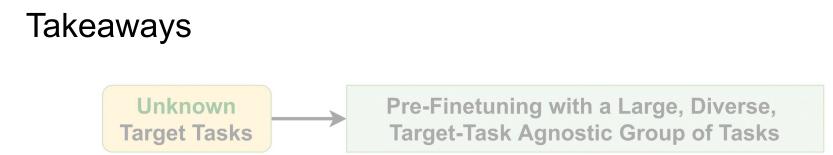
Interplay of Transferability and Multi-Task Scaling

Target task performance on pre-finetuning with a small group of related tasks is on-par with the large-scale multi-task setup

	Baseline	Only-SL	Only-C	Only-QA	SL+C	SL+QA	QA+C	SL+C+QA
Unseen SL	80.134	80.844	72.370	78.693	79.453	80.165	77.378	80.750
Unseen C	68.109	67.406	71.404	63.21	70.422	70.068	70.067	73.021
Unseen QA	56.692	45.174	61.120	75.252	57.568	75.460	75.035	75.678
Average	68.312	64.475	68.298	72.385	69.147	75.564	74.160	76.483

Interplay Between Task Groups

It's hard to predict the interplay between tasks, so selecting an optimum subset of tasks is challenging


	Baseline	Only-SL	Only-C	Only-QA	SL+C	SL+QA	QA+C	SL+C+QA
Unseen SL	80.134	80.844	72.370	78.693	79.453	80.165	77.378	80.750
Unseen C	68.109	67.406	71.404	63.21	70.422	70.068	70.067	73.021
Unseen QA	56.692	45.174	61.120	75.252	57.568	75.460	75.035	75.678
Average	68.312	64.475	68.298	72.385	69.147	75.564	74.160	76.483

Similar findings were reported in Aribandi, Vamsi, et al. "ExT5: Towards Extreme Multi-Task Scaling for Transfer Learning." *arXiv preprint* arXiv:2111.10952 (2021).

Takeaways

• When the target tasks are **unknown**, **multi-task scaling** provides an effective **general purpose model**

• If the goal is to improve performance on a **specific target task(s)** then a **smaller set of related tasks** is an effective, **computationally cheaper alternative**

For more details, stop by Poster Session 2 on 7/11 at 2:30pm :)